Sensitivities of future long baseline experiments in the U.S.

Mark Dierckxsens University of Chicago

Nufact 07, 6-11 August, 2005 Okayama, Japan

FNAL/BNL study

- ✓ Joint FNAL & BNL study to compare future long baseline experiments in the US
 ⇒ see talk by M. Bishai for more details
- This talk about inputs to sensitivity calculations
- Two detector techniques considered:
 - x Liquid Argon
 - × Water Cherenkov
- Two neutrino beams considered:
 - x narrow band NuMI off-axis beam to NOvA location
 - x wide band beam to DUSEL site

Long Baseline Experiments

- Limit to above experiments for this talk
- More variations have been studied

Neutrino Beams

Beam Power

- Possible scenarios for upgrades to increase beam power output of the Main Injector at FNAL:
 ⇒ see talk B. Zwaska
- Calculations for this study mostly done for an exposure of 30 10²⁰ protons on target (pot) for neutrino and anti-neutrino running each.
- You can plug in your favorite upgrade and convert this number to length of data taking
- As example:
 - 1.2 MW 120 GeV proton beam
 - @ FNAL: 1.7 10⁷s/year
 - -> 10 10²⁰ pot/year

NuMI off-axis

 ν ν_{μ} cc event rates and ν_{e} appearance probabilities for a 0.8° off-axis NuMI beam at 810km

 sensitivities for other options, like placing a detector at 2nd oscillation maximum considered

Wideband beam

 ν_{μ} cc event rates and ν_{e} appearance probabilities for a 120 GeV 0.5° off-axis wide band beam at 1300km

Other proton energies and distances also considered

Detectors

Liquid Argon

- ✓ 100 kt liquid argon (LAr) detector
- Can be placed at NOvA or DUSEL site
- Signal & background efficiencies based on hand scanning. (B. Flemming et al):

```
v_e CC efficiency: 80% complete rejection of NC background
```

- Results confirmed/exceeded using initial automated tools. (A Curioni)
- Energy resolution for

```
QE CC: 5% √E non-QE CC: 20% √E
```

LAr spectra @ NOvA

✓ Neutrino running and $\sin^2 2\theta_{13} = 0.04$

LAr spectra @ NOvA

✓ Anti-neutrino running and $sin^2 2\theta_{13} = 0.04$

LAr spectra @ DUSEL

✓ Neutrino running and $\sin^2 2\theta_{13} = 0.04$

LAr spectra @ DUSEL

✓ Anti-neutrino running and $sin^2 2\theta_{13} = 0.04$

put S/B (<8GeV)

- ✓ 300 kton water Cherenkov (WCh) detector
- Must be underground to reduce cosmics rate
 - -> DUSEL
- Two independent studies performed to improve selection of electron neutrino interactions
 - C. Yanagisawa
 - F. Dufour/E. Kearns

ightharpoonup Both use SuperK MC and follow similar strategy to improve separation between electrons and π^0 decays: very similar results are obtained

 Standard SuperK cuts are used to select single e-like events

A π⁰ reconstruction algorithm called Pattern-of-light fit (Polfit) is used to find second ring: improves π⁰ eff. by 20-30%

The output of polfit and several other variables (some related to knowledge of beam direction) are used as input for a likelihood based analysis

Efficiencies are used for sensitivity calculations

Parametrized smearing functions

 v_x NC: based on nuance

WCh spectra @ DUSEL

WCh spectra @ DUSEL

✓ Anti-neutrino running and $sin^2 2\theta_{13} = 0.04$

put S/B (<8GeV)</pre>

Sensitivity Studies

Sensitivity calculations

- ✓ Sensitivity to non-zero θ_{13} : fit spectrum generated for particular (θ_{13} , δ_{cp}) to hypothesis with θ_{13} =0
- ✓ Sensitivity to CP violation: fit spectrum generated for particular (θ_{13} , δ_{cp}) to hypotheses δ_{cp} =0 and π . Take worst χ^2 . θ_{13} is allowed to float in fit
- Sensitivity to matter hierarchy: fit spectrum for particular $(\theta_{13}, \delta_{cp})$ to hypothesis with opposite mass hierarchy. Both θ_{13} and δ_{cp} are allowed to float
- ν (θ_{13} , δ_{cp}) measurement (for DUSEL only): parameter measurement for certain values

Input parameters & uncertainties

			ı	
pal	rar	nei	ter	

NuMI off axis

FNAL-DUSEL

Uncertainty

$$\Delta m_{32}^2 = 2.7 \ 10^{-3} \ eV^2$$

from
$$\nu_{_{\!\scriptscriptstyle \mu}}\!\to\!\nu_{_{\!\scriptscriptstyle \mu}}$$

$$\sin^2\theta_{23} = 1.0$$

from
$$\nu_{\mu} \! \to \! \nu_{\mu}$$

$$\Delta m_{21}^2 = 8.6 \ 10^{-5} \ eV^2$$

$$\sin^2 2\theta_{12} = 0.86$$

$$\rho = ???$$

background

tools

Sensitivity calculations

- ✓ Short names for various experiments: NuMI-LAr: 100kt LAr det. in 0.8° off-axis NuMI beam at 810km WBLE-WCh: 300kt Water Cherenkov det. in 120 GeV 0.5° off-axis wide band beam at 1300km WBLE-LAr: same as above but 100kt LAr det.
- ∠ Limits quoted as the value of $\sin^2 2\theta_{13}$ above which the sensitivity is ≥ 3σ for 50% of δ_{CP} phases for the worst mass hierarchy case.
- ✓ Reminder: fits shown are for 30 10²⁰ pot for neutrino and anti-neutrino running each

Sensitivity to $\sin^2 2\theta_{13} \neq 0$

Sensitivity to CP violation

Sensitivity to mass hierarchy

$(\theta_{13}, \delta_{cp})$ measurement

 \checkmark Measure $sin^22\theta_{13}$ to 10% (6%) with WBLE-WCh (WBLE-LAr) for $sin^22\theta_{13}{>}0.01$ independent of δ_{CP}

Background WBLE-WCh

Reduce background uncertainty from 10% to 5%:

- $v \sin^2 2\theta_{13}$: 0.006 \to 0.005
- \checkmark CP violation: 0.03 → 0.02
- $\sim \text{sign}(\Delta m_{31}^2)$: $0.01 \rightarrow 0.01$

Increased Statistics WBLE-WCh

5% background uncertainty & 120 10^{20} pot for $v+\overline{v}$

Increased statistics WBLE-LAr

60 10^{20} pot for v and \overline{v} each

 $sin^2 2\theta_{13}$: $0.003 \rightarrow 0.002$

CP violation $0.005 \rightarrow 0.003$

sign(Δm_{31}^2): 0.006 \to 0.004

2nd off-axis detector

Project X

✓ From Y.K. Kim's talk at HEPAP meeting July 07: 2.6MW at 60GeV

http://www.science.doe.gov/hep/ HEPAPJuly2007Agenda.htm

 $\sim \sin^2 2\theta_{13}$: 0.003

✓ ØF: 0.01

 $\sim \text{sign}(\Delta m_{31}^2): 0.007$

Conclusions

still to write...

More information and supporting documents available at :

http://nwg.phy.bnl.gov/~diwan/nwg/fnal-bnl/

Backup Slides

Wide band beam

WCh detector

✓ put some plots from Chiaki/Fanny

Background WBLW-WCh

✓ put plots with x2 background reduction

Other Off-axis combinations